Exercice 1

Déterminer la fonction f continue sur \mathbb{R} vérifiant $(E): f(x) - \int_0^x t f(t) dt = 1$

Corrigé 1

Supposons qu'une telle fonction f existe. La fonction $t \mapsto tf(t)$ étant continue sur continue sur \mathbb{R} , la fonction $x \mapsto \int_0^x tf(t)dt$ est de classe \mathcal{C}^1 sur \mathbb{R} . Puisque $\forall x \in \mathbb{R}$, $f(x) = \int_0^x tf(t)dt + 1$, f est de classe \mathcal{C}^1 sur \mathbb{R} .

En dérivant les deux membres de (E) on obtient (E'): $\forall x \in \mathbb{R}, f'(x) = xf(x)$. La fonction f est, par conséquent, solution de l'équation différentielle linéaire y' = xy dont la solution est :

 $x \longmapsto \lambda \exp\left(\int_0^x t dt\right) = \lambda \exp\left(\frac{x^2}{2}\right) \text{ avec } \lambda \in \mathbb{R}.$

En remplaçant x par 0 dans l'équation, obtient la condition f(0) = 1 qui implique $\lambda = 1$.

Donc $f: x \longmapsto \exp\left(\frac{x^2}{2}\right)$ est la seule solution de possible.

Réciproque : On vérifie immédiatement que f satisfait la condition (E), f est donc l'unique solution

— Mohammed EL BACHIR —