Définition différentielle

Différentielle

Définition 1

Soient $\overline{\mathbb{U}}$ un ouvert de \mathbb{R}^n et $f:\mathbb{U}\longrightarrow\mathbb{R}$ une fonction réelle définie sur \mathbb{U} et $a\in\mathbb{U}$, on dit que f est différentiable au point a si

- 1. Les dérivées partielles $\frac{\partial f}{\partial x_j}(a)$ de f en a existent toutes avec j=1,...,n.
- 2. $\forall \epsilon > 0, \exists \mu > 0$ tel que $\forall x \in \mathbb{U},$

$$0 \le \|x - a\| < \mu \Longrightarrow \left| f(x) - f(a) - \sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(a) \left(x_{j} - a_{j} \right) \right| \le \epsilon \|x - a\|$$

— Mohammed EL BACHIR —