Les matrices

Exercice 1. Pour $\alpha \in \mathbb{R}$, on considère la matrice $A_{\alpha} \in \mathcal{M}_3(\mathbb{R})$ suivante :

$$A_{\alpha} = \begin{pmatrix} 0 & \alpha & 1\\ 1 & 1 + \alpha & 1\\ 1 & \alpha & 2 \end{pmatrix}$$

- 1. Déterminer le rang de la matrice A_{α} en discutant selon les valeurs de α .
- 2. Montrer qu'elle est inversible si et seulement si $\alpha \neq 1$.

Correction 1. 1. On cherche le déterminant de A_{α} ,

$$A_{\alpha} = \begin{vmatrix} 0 & \alpha & 1 \\ 1 & 1 + \alpha & 1 \\ 1 & \alpha & 2 \end{vmatrix} = \begin{vmatrix} 0 & \alpha & 1 \\ 1 & 1 + \alpha & 1 \\ 0 & -1 & 1 \end{vmatrix} = \begin{vmatrix} 0 & \alpha & 1 + \alpha \\ 1 & 1 + \alpha & 2 + \alpha \\ 0 & -1 & 0 \end{vmatrix} = (1 + \alpha) \begin{vmatrix} 0 & 1 \\ 1 & 2 + \alpha \end{vmatrix} = 1 + \alpha$$

- (a) Si $\alpha \neq -1$, alors $rgA_{\alpha} = 3$
- (b) Si $\alpha=-1,$ alors ${\rm rg}A_{\alpha}=2$ car $C_3+C_2=C_1$
- 2. A_{α} est inversible \iff det $A_{\alpha} \neq 0$ donc si et seulement si $\alpha \neq -1$.