Définition 1. Soient \mathbb{E}, \mathbb{E}' deux ensembles, $f : \mathbb{E} \longmapsto \mathbb{E}'$ une application.

1. Pour toute partie A de \mathbb{E} , on définit l'**image directe de** A **par** f, notée f(A):

$$f(A) = \left\{ x^{'} \in \mathbb{E}^{'}, \exists a \in A, x^{'} = f(a) \right\}$$

2. Pour toute partie $A^{'}$ de $\mathbb{E}^{'}$, on définit l'**image réciproque** de $A^{'}$ par f, notée $f^{-1}(A^{'})$:

$$f^{-1}(A') = \left\{ x \in \mathbb{E}, f(x) \in A' \right\}$$

Théorème 1.

Pour tous A une partie de \mathbb{E} et $x^{'} \in \mathbb{E}^{'}$:

$$x^{'} \in f(A) \iff \left(\exists a \in A, x^{'} = f(a)\right)$$

Pour tous A' une partie de \mathbb{E}' et $x \in \mathbb{E}$:

$$x \in f^{-1}(A') \iff f(x) \in A'$$

— Mohammed EL BACHIR —