Contrôle continu d'Intégration

Durée 1h00

Les calculatrices et les documents sont interdits

Dans les exercices, on pourra admettre les résultats d'une question pour faire les questions suivantes.

(Le barême est donné à titre indicatif, il est susceptible de changer).

Exercice 1(7pts)

On veut calculer l'intégrale triple suivante

$$I = \iiint_{\Omega} \frac{\cos z}{\sqrt{x^2 + y^2 + z^2}} \, dx dy dz,$$

où Ω est la demi-coque suivante $\Omega=\{(x,y,z)\in\mathbb{R}^3,z\geq0,\frac{\pi^2}{4}\leq x^2+y^2+z^2\leq\pi^2\}.$

- 1) (3pts) Donner un changement de variables en coordonnées sphériques, en précisant le domaine des nouvelles coordonnées et en rappelant le jacobien correspondant.
- 2) (4pts) Calculer I en faisant un changement de variables en coordonnées sphériques. On donnera le nom des théorèmes utilisés mais sans les énoncer.

(on pourra remarquer que la fonction $f(t) = a \cos t \cdot \cos(a \sin t)$ est de la forme $u' \cdot (v' \circ u)$).

Exercice 2(13pts)

On souhaite calculer l'intégrale suivante

$$I = \iint_{\Omega_1} \left(\frac{u}{2} + v \right) \left(\frac{u^2}{4} - v^2 \right) e^{-\left(\frac{u}{2} + v \right)^2 \left(\frac{u^2}{4} - v^2 \right)} du dv,$$
où $\Omega_1 = \left\{ (u, v) \in \mathbb{R}^2, \frac{|u|}{2} + |v| \le 1 \right\}.$

Pour cela on propose le changement de variable suivant u = x + y et $v = \frac{x - y}{2}$. On définit donc la fonction suivante

$$F: [-1;1]^2 \longrightarrow \Omega_1$$

$$(x,y) \longmapsto (x+y,\frac{x-y}{2}).$$

- 1) (2pts) Enoncer le théorème de changement de variables (en dimension 2).
- 2) (2pts) Montrer que F est une bijection de $[-1;1]^2$ dans Ω_1 .
- 3) (2pts) Calculer le jacobien de F pour tout $(x, y) \in [-1; 1]^2$.
- 4) (2pts) Montrer qu'il existe une constante K que l'on précisera telle que

$$I = K \iint_{[-1;1]\times[-1;1]} x^2 y e^{x^3 y} dx dy.$$

- 5) (2pts) Enoncer le théorème de Fubini en dimension 2 (uniquement dans un sens).
- 6) (3pts) Calculer I (on intégrera d'abord par rapport à x).